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ABSTRACT

Collaboration among different stakeholders in achieving a
problem-solving task is increasingly recognized as a vital com-
ponent of applied research today. For instance, in various re-
search areas in engineering, economics, medicine, and society,
optimization methods are used to find efficient solutions. Such a
problem-solving task involves at least two types of collaborators
– optimization experts and domain experts. Each collaborator
cannot solve a problem most efficiently and meaningfully alone,
but a systematic collaborative effort in utilizing each other’s
expert knowledge plays a critical and essential role. While
many articles on the outcome of such collaborations have been
published, and the justification of domain-specific information
within an optimization has been established, systematic ap-
proaches to collaborative optimization have not been proposed
yet. In this paper, methodical descriptions and challenges of col-
laborative optimization in practice are provided, and a blueprint
illustrating the essential phases of the collaborative process
is proposed. Moreover, collaborative optimization is illustrated
by case studies of previous optimization projects with several
industries. The study should encourage and pave the way for
optimization researchers and practitioners to come together and
embrace each other’s expertise to solve complex problems of
the twenty-first century.

Keywords: Collaborative Optimization, Industrial Optimiza-
tion, Multi-disciplinary Design Optimization, Domain-specific
Expert, Optimization Expert

1. INTRODUCTION

Interdisciplinarity is a critical component of any applied re-
search nowadays. Multiple branches of knowledge coming to-
gether require not only to master each discipline independently
but also their intersections. A discipline playing an essential
role in various sciences regarding problem-solving tasks is
(mathematical) optimization. The interdisciplinary character of
optimization becomes apparent by studying related literature
in various research fields, such as engineering, economics,
medicine, and society [1]–[4]. While reading different kinds
of studies, one will realize that some publications focus on
the domain and others more on the optimization method itself;
however, most of the attention is paid to the investigation’s

outcome and not the collaborative process. Since collaboration
is vital for success, this paper focuses on aspects of collaborative
research in the context of optimization, which will be referred
to as collaborative optimization in the remainder of this study.

Collaborations are essential in an interwoven discipline like
optimization, which requires knowledge in optimization itself
and one or multiple other domains. Because domain knowledge
is the foundation for the algorithm’s design, its incorporation re-
quires a fundamental or even deep understanding of the domain
and the desired method’s requirements. Naturally, this demon-
strates the need for the domain and optimization knowledge,
which is realized by initiating a collaboration. The attempt of
separately solving the domain-specific and optimization-related
tasks is likely to fail; however, this is still carried out even
nowadays in practice. For instance, such a clear separation of
tasks can be realized by having a domain expert formulating the
problem statement on its own and the optimization expert to de-
velop from there on the algorithm without any further feedback
from the domain expert. Even though each task should have a
collaborator responsible and take the lead, communication and
agreements are vital for true collaboration and success. Thus,
in collaborative optimization, the outcome is more than the sum
of its parts, and success is achieved by effectively addressing
the fusion of multiple research fields.

This paper’s focus shall lie on the research collaboration in
any kind of discipline where optimization is needed and applied.
Thus, the different phases of collaboration and all supporting
activities are of importance. Furthermore, in this study, col-
laborative optimization is based on human-human interactions;
however, human-machine interaction can be a component of the
problem description. Nevertheless, related works specify col-
laborative optimization only in the context of multi-disciplinary
design optimization [5], this study considers collaboration in a
more generic context. Moreover, it is worth mentioning that the
term collaborative optimization has also been used to refer to
a specific type of algorithms to solve large-scale optimization
problems [6], [7], which shall also not be the focus of this study.

In the remainder of this paper, we first discuss work re-
lated to different aspects of collaborative optimization. In Sec-
tion 3, we propose a blueprint for collaborative optimization by
describing primary and supporting activities. Illustrative case
studies are provided in Section 4 and conclusions are discussed
in Section 5.



2. RELATED WORK

Collaboration can be defined as “the situation of two or more
people working together to create or achieve the same thing” [8].
The aspect of sharing the same goal while working together is
essential to understand the word’s meaning. Another definition
emphasizes the existence of conflicting goals, which shall be
reduced to a common denominator and the fact a collaboration
to be more contentious than a coordination or cooperation [9].
In the field of optimization, well-studied subjects characterize
collaboration by projects and project management, interdisci-
plinarity, communication, and (applied) research. Even though
all of them have to be mastered simultaneously in collaborative
optimization, related work shall consider them independently
for now. A more precise definition of collaborative optimization
and these aspects’ interactions will be provided later on in this
study.

Projects have been well-studied throughout the literature and
are a fundamental part of the economics literature. Especially
techniques to measure the success of a project have been of
interest. A well-known method for measuring success is the so-
called iron triangle, describing success as a trade-off of time,
cost, and quality [10]. Whereas most authors agree with the
criteria being used are critical, the model has also been criticized
for being too simple. Thus, more sophisticated models have
been proposed to measure the success or failure of a project.
In general, there is an agreement that for projects in general,
measuring success is challenging, not least because of subjective
views of stakeholders or the time dependency [11]. During a
project, the time is also referred to as the project life cycle,
which can be divided into different phases: conceptualization,
planning, executing, termination [12]. More modern approaches,
however, are not following the traditional waterfall model;
instead, they pursue a flexible and iterative project management
strategies [13].

Projects with goals regarding more than one discipline have
to deal with interdisciplinary challenges. Interdisciplinary is
characterized by a suitable combination of knowledge from
different specialties to achieve that the combinations’ val-
ues exceed the sum of all contributions individually [14].
A successful fusion of disciplines requires to unify separate
ways of understanding and approaching problems across disci-
plines [15]. Rooting interdisciplinary research more in society
was attempted by promoting work across disciplines on many
research universities’ campuses in the United States in the past
years. However, the general superiority of interdisciplinary over
disciplinary knowledge has also been critically assessed [16].

Collaboration across disciplines has to ensure efficient com-
munication. Unavoidably, communication is a practical disci-
pline and a vital skill for many different sciences [17]. It is
a widespread belief that interpersonal and social problems are
caused by impaired communication and can be alleviated by
good communication [18].

Besides essential aspects of collaboration itself, successful
collaborations in optimization are evident by studying the litera-
ture. Various studies show optimization is almost ubiquitous, for
instance, in Agriculture [1], Engineering [2], Medicine [3] , or
Economics [4]. Different research studies use different kinds of
collaborations among different stake-holders. Collaboration are
also set up in different ways, for example, in the same laboratory

between researchers, across departments and research groups,
across research institutes in the same of different countries, or
between academia and industry.

3. SOLVER: COLLABORATIVE OPTIMIZATION
Collaborative optimization describes a procedure involving at
least two stakeholders – a domain-specific and optimization
expert – pursuing to solve an optimization problem interactively.
The domain-specific expert initially provides the problem to be
solved with the optimization expert’s knowledge and experience.
The interaction between both experts is crucial to successfully
solve the problem and can occur at different levels of involve-
ment.

Even though collaborations are carried out in different man-
ners and have different challenges, they often have analogous
phases and supplemental activities. Thus, collaborative opti-
mization shall be schematized to track the overall progress and
highlight important aspects for a successful collaboration. A
blueprint for collaborative optimization is shown in Figure 1,
presenting not only the phases but also the supporting activities.
The primary phases follow the SOLVeR acronym: Specification
of the Problem (‘S’), Optimization and Algorithm Design (‘O’),
Live Test (‘L’), Verification of Method and Results (‘Ve’), and
Repetitions and Lessons Learned (‘R’). For each phase, the
domain and the optimization expert’s roles and responsibilities
differ and shall be discussed in detail. Moreover, the arrows be-
tween the phases on the bottom indicate that multiple iterations
of phases are inevitable in practice and an essential part of a
collaboration. Furthermore, the phases are accompanied by sup-
porting activities, such as project management, communication,
interdisclinarity and the type of collaboration. The blueprint’s
split of primary and supporting activities is inspired by the
well-known value chain model [19] with similar characteristics.
Both the primary, as well as supporting activities are essential
to reach the goals. In the following, the five SOLVeR phases
are discussed, and additionally, an overview of each phase’s
characteristics is provided in Figure 2. Moreover, all supporting
activities are described in detail.

(i) Specification of the Problem (‘S’): In the first phase, all
collaborators shall get a clear understanding of the optimization
method’s overall goal. For the optimization expert, this often
requires understanding the fundamentals of a foreign research
field. Thus, the domain expert’s responsibility is to commu-
nicate efficiently and to define domain-related terminology if
necessary. The primary goal is not for all collaborators to
understand every little detail but to grasp what the problem
is about. Thus, abstraction should be made whenever possible.
Moreover, possible requirements and meta-information about
the problem should be discussed, for instance, the evaluation
time of a single design or the type and number of variables to be
considered. After the problem has been defined verbally, it shall
be stated mathematically, defining the objective(s), constraints,
and the underlying search space. With fundamental knowledge
about the domain, the optimization expert will often take the
lead for the mathematical problem formulation. Nevertheless,
the domain expert’s feedback is crucial to ensure the formulation
fits the specifications and the domain expert’s expectations. For
instance, a target measure could be either incorporated into the
problem formulation as a constraint or an objective. Whereas
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Figure 1: SOLVeR – Collaborative Optimization Practice.

both options might be legitimate ways of considering this met-
ric, domain knowledge can favor one or the other. The domain
knowledge, together with the optimization expert’s knowledge
about each option’s benefits and drawbacks in an optimization
sense, demonstrates the benefits of a close collaboration from
the beginning.

(ii) Optimization and Algorithm Design (‘O’): After the prob-
lem has been defined mathematically, the design of a suitable
algorithm shall be of most interest. The selection or design of an
algorithm requires experience in optimization and can be rather
challenging. Before starting with the algorithm’s design, all
problem-dependent information shall be analyzed. For instance,
does the evaluation also provide information about the gradient?
How many function evaluations are affordable? However, some
characteristics can only be assumed and are not known before-
hand. For example, a vital question to ask is the modality of
the function’s fitness landscape because it determines whether
a local or global search might be appropriate. If there is an
explicitly defined equality constraint, one of the variables can be
replaced in terms of other variables – a process that eliminates
one variable, and also every modified solution will automatically
satisfy the equality constraint. The use of such information
to redefine an original problem requires collaboration between
optimization and domain-specific experts at the start of the
optimization process. A standard optimization algorithm can be
modified to suit the supplied problem information. This can
happen in modifying different operators of the algorithm. For
example, the initial solution(s) can be repaired to satisfy certain
constraints so that the search can begin from a good solution(s).
The generative operations for creating new solutions can be
motivated by the problem information so that new solutions
satisfy the supplied problem information.

The fact that the mathematical problem definition and the
optimization method are directly linked to each other demon-
strates the interdependence of the first two phases and the impor-

tance of collaboration. After completing phase two, an algorithm
has been developed, possible bugs during development have
been fixed, and source code or a binary file for running the
method exists.

(iii) Live Test (‘L’): In the third phase, the developed algorithm
is run in a live environment to observe its performance on the
real-world optimization problem. The testing phase is crucial
to ensure that the algorithm’s design is suitable for the original
problem. This might require interfacing between different pro-
gramming languages or setting up the computational resources
to run the method in a live environment. The domain and
optimization expert’s responsibilities in this phase depend on
the type of collaboration and agreements. On the one hand, the
algorithm design might be driven by test problems with similar
characteristics as the real-world optimization problem because
of the lack of computational resources or software licenses on
the algorithm developer’s end or the industrial partner preferring
not to make the problem accessible to the outside. On the other
hand, the problem’s evaluation function might be delivered to
the optimization expert – either open or closed source – and
be directly used during the algorithm’s design. In some cases,
the problem might have been only defined vaguely from the
beginning on, and the developer needs to implement a represen-
tative live environment from scratch, for instance, by generating
synthetic data with reasonable assumptions. The variety of live
tests’ realizations show that different collaboration types require
a different amount of collaborative effort in this phase. However,
no matter what type has been chosen, this phase’s outcome is
a method and results that have to be analyzed.

(iv) Verification of Method and Results (‘Ve’): In the fourth
phase, the goals and requirements defined initially need to be
critically assessed and verified. The verification is based on
the results obtained in the previous phase. Even though the
verification procedure will vary from collaboration to collab-
oration, some tasks employed in practice are to analyze the
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algorithm’s convergence over time and carefully inspecting the
solutions being found. In some collaborations, the optimization
is only performed once, and most attention is paid to the
obtain solution(s) itself, and the method plays a minor role.
The obtained solutions need to be closely examined and made
sure that all requirements are satisfied. The examination often
involves checking correctness, feasibility, and the visualization
of solutions and results. If discrepancies have been observed,
the mathematically defined problem might need to be refined
or even entirely redefined, and a reiteration to phase one be
necessary. Other collaborations might focus more on the method
itself, primarily when the algorithm is run repetitively, for
instance, daily or weekly. Then, a thorough test of the method,
including possible boundary scenarios, is of importance. More-
over, for stochastic algorithms, not a single run’s performance
but a statistical analysis of a set of runs shall be done to
address the underlying randomness and ensure the method’s
robustness. No matter where the priority of the collaboration
lies, the verification is crucial to measure the overall success.

(v) Repetition and Lesson Learned (‘R’): As recommended
for projects in general, the last phase consists of reflecting on
the collaboration and critically assessing the progress made.
Practitioners will agree that no projects on without any future
work being done and possible new collaborations being initi-
ated. Thus, drawing lessons learned to avoid possible pitfalls
helps improve efficiency and productivity long-term.

Besides primary activities classified into phases, supporting
activities are an essential part of collaborative optimization. The
supporting activities accompany any of the primary phases and
play a different role anytime during the collaboration.

Project Management: A project is characterized by a project
schedule with a clearly defined beginning and end. Moreover,
the project’s outcome is typically defined by milestones and

project goals, which should be achieved during or at the end
of the project. In practice, goals can also be conflicting, for
instance, in a university-industry research collaboration where
the researchers prioritize a seminal publication. In contrast, the
industry might want to keep the findings confidential to keep
a competitor’s advantage. Agreeing on the goals initially and
keeping track of them is good advice in all collaborations.
Moreover, project management includes all matters regarding
funding more resources and workforce during the collaboration.

Communication: Efficient communication is essential on many
levels. The collaboration is accompanied by communication
throughout all phases. The availability of collaborators and the
communication frequency can have a significant impact on the
project’s outcome. While some collaborators prefer frequent
feedback, such as daily or weekly, others favor less frequent
meetings, for instance, monthly or biannually. Besides the fre-
quency of regular meetings, the collaboration should define
several milestone meetings, consisting of at least a kick-off and
final meeting. The type of communication often depends on
the geographical distance between collaborators. A relatively
small distance and convenient commute shall allow in-person
meetings. Often, however, this is not the case, and mostly
online meetings are scheduled. Modern technology that allows
to turn on a webcam, share the screen, or even take over
screen control can become handy to increase such meetings’
productivity. Moreover, consistent e-mail correspondence and a
hybrid style of in-person and online communication are often
carried out in practice. Challenges in communication commonly
occur through domain-specific terminology, which is not clear
to all collaborators or even language barriers in international
collaborations.

Interdisciplinarity: Many collaborations have their origin of
a subject being of an interdisciplinary manner. Therefore, an



expert for the involved disciplines significantly speed up the
research process or make meaningful insights possible at all.
In collaborative optimization, interdisciplinarity is given by the
presence of optimization itself and one other discipline. For
some projects, even multiple other disciplines might be involved
with possible conflicting objectives. In the literature, such a
situation related to optimization is also referred to as Multi-
disciplinary Design Optimization (MDO). During the collabora-
tion, especially during the initial problem specification phase, a
fundamental understanding of each discipline is essential. Even
only rudimentary knowledge helps develop an appreciation for
each other’s research fields and facilitate meaningful discus-
sions.

Collaboration Type: The type of collaboration has a significant
impact on each collaborator’s responsibility. With the type of
collaboration, we refer to aspects related to the involvement,
type, and the number of collaborators. In a light collaboration,
details of the optimization problem regarding complete problem
formulation are available to the optimization experts, thereby
not requiring much collaboration between the two expert groups.
In a medium collaboration, besides the details of the problem
formulation, further information is required either due to the
complexity involved in the problem or due to the nature of the
problem. Optimization experts must share intermediate results
with domain-specific experts to get further information to im-
prove the optimization method. In a strong collaboration, both
groups must engage in more collaboration to solve the problem.
This can happen if the objective and constraint functions cannot
be shared with the optimization experts due to the confiden-
tiality issues or unavailability of computing resources with the
optimization group.

4. CASE STUDIES
The blueprint for collaborative optimization can put into

practice in different ways. We demonstrate two case studies
to illustrate.

Case Study 1: Cylinder Head Water Jacket. As a case study,
the collaboration with an automobile company regarding the
optimization of a Cylinder Head Water Jacket is discussed.
A study focusing on the optimization itself has already been
published [20]; however, details of the collaborative process
itself were not part of the study. Initially, the industrial partner
with domain-specific expertise was looking for an optimization
expert to solve an industrial design problem that could not be
solved suitably with a commercial solver. Most commercial
solvers are generic and not ideal candidate solution methods to
find an acceptable solution with a budget of solution evaluations.
Thus, a collaboration was initiated. The industrial collaborator
had a background in engineering and more than a decade of
experience in engineering design. The optimization experts are
specialized in multi-objective and evolutionary optimization,
and the team consisted of one professor and two Ph.D. stu-
dents. The goal to design an algorithm that can deal with a
constrained multi-objective optimization problem where each
evaluation requires computationally expensive simulation was
defined (phase ‘S’). Due to the time-consuming evaluation
function, the overall evaluation budget was limited to only
120 simulations per optimization run. However, the algorithmic
overhead could be significantly higher and even reach a couple

of minutes to find new solutions in each iteration. Secondly,
the algorithm was first developed on test problems with similar
characteristics but computationally inexpensive functions (phase
‘O’). Even though the algorithm has been designed from scratch,
the usage of existing modules and algorithms of pymoo [21] – a
Python framework for multi-objective optimization – was handy
for prototyping and sped up the algorithm’s development. Bi-
monthly discussions between all collaborators accompanied the
research process. Thirdly, multiple runs on the live environment
(phase ‘L’) optimizing the Cylinder Head Water Jacket have
been employed. Because the optimization experts did not have
access to the simulation software, the optimization run was
carried out manually by sending engineering designs back and
forth via e-mail. This way, multiple experiments have been run,
and at the same time, the results were verified (phase ‘Ve’).
Thus, the execution of phase ‘L’ and ‘Ve’ happened simultane-
ously. As the method has been confirmed to be suitable for the
optimization problem, the source code has finally been delivered
to the industrial partner. Delivering the source code ensured the
algorithm to be used in the future for similar kinds of problems
(phase ‘R’). Moreover, a final meeting discussing the method
and assessing the project’s success has taken place between all
collaborators and coworkers from related departments.

Case Study 2: Engine Design. In another auto-industry project,
the initial task of the industry designers was to reduce the
weight of an automobile engine from its current weight by 10
kg (phase ‘S’). The problem involves 145 discrete variables,
which can be varied within specified lower and upper bounds,
146 constraints which all must be satisfied, and six conflicting
objectives which all must be optimized. The objective and
constraint functions were not available in explicit form; rather,
a black-box executable was supplied. Initial collaborations be-
tween the two groups revealed that the functions’ gradients were
also available from the executable routine. The availability of
gradient information allowed the optimization experts to devise
a new operator – a gradient-based local search approach – to
improve a solution locally. Another study revealed that when
2.5 million random solutions were evaluated, no single solution
was found to be feasible. The majority of the search space being
infeasible prompted optimization experts to devise an algorithm
to infinitely emphasize every feasible solution. A generic many-
objective optimization algorithm (NSGA-III [22]) was modified
to develop a customized method (phase ‘O’) to find a feasi-
ble non-dominated solutions. The customized algorithm was
directly applied to solve the engine design problem (phase
‘L’). The developed method resulting from a close collaboration
found a new engine, 17 kg lighter than the current design,
which is 7 kg better than originally desired (phase ‘Ve’). Further
information on obtained results can be found from [23]. This
study mostly used a light collaboration mode.

The power of collaborative optimization came next from the
designers. The multiplicity of designs obtained by customized
NSGA-III motivated the designers to set the next goal (phase
‘R’) to find multiple engines with identical weight. This pro-
moted the whole ‘SOLVeR’ procedure to a new specification
(phase ‘S’). Optimization experts then introduced the concept
of niche-preservation – survival of similar solutions as clusters
– to develop a new optimization method (phase ‘O’). Niche
preservation is a new optimization technique that was possible to



be developed only by a collaborative problem-solving approach.
The method was applied to the real problem (phase ‘L’), and
three different pairs of engines, each having an identical weight,
were obtained (phase ‘Ve’). The SOLVeR approach’s ability to
reduce the engine weight by more than 10 kg motivated the
designers to repeat the process (phase ‘R’) to a third cycle in
which they aspired to reduce the weight further by relaxing the
constraint bounds.

Relaxation of constraints to improve objective function was
dealt with by formulating a two-objective optimization problem
(phase ‘O’). One of the objectives was to minimize the amount
of constraint violation from the current best solution; the second
conflicting objective was to maximize the amount of weight
reduction from the current best solution. The bi-objective opti-
mization method found multiple trade-off solutions with differ-
ent combinations of constraint violations and weight reductions
(phase ‘L’). The solutions allowed designers to better understand
the trade-off before choosing a final solution for implementation
(phase ‘Ve’).

None of these extensions achieved with specific and innova-
tive optimization methods were academic, nor were they stan-
dard optimization practices. However, they revealed alternate
solutions close to the designers’ interests, so they had a plethora
of pertinent solutions before choosing one. Such a design feat
was possible only with a collaborative optimization procedure.

5. CONCLUSIONS

Optimization is an interdisciplinary research field and a sub-
stantial part of various sciences. Thus, collaboration is vital
to tackle problem-solving tasks in all kinds of disciplines
successfully. Whereas most studies focus on the outcome of
such collaborative optimization, this study puts the center of
attention on the collaborative process itself. To guide the process
of collaboration, we have proposed a blueprint following the
SOLVeR approach consisting of five phases: Specification of
the Problem, Optimization and Algorithm Design, Live Test,
Verification of Method and Results, and Repetitions and Lesson.
We have defined the domain and the optimization expert’s
roles and responsibilities for each phase and highlighted the
other supporting activities during collaborative optimization.
Moreover, two case studies have illustrated how the blueprint
for collaborative optimization was implemented in practice.

This paper has demonstrated the importance of performing a
collaborative optimization rather than a silo-based optimization
without any intermediate interactions from the domain-specific
experts. Collaborative optimization does not only allow large-
scale challenging problems to be solved for finding optimized
solutions quickly but also opens up new avenues for more
flexible and practical optimization studies that would not have
been possible to comprehend without collaboration between
domain experts and optimization specialists.
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