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Introduction

Modern practical optimization problems are too often complex, nonlin-
ear, large-dimensional, and sometimes dynamic making gradient-based
and convex optimization methods too inefficient. In this paper, we
present a formulation of a dynamic vessel-to-vessel service ship schedul-
ing problem. In a span of several hours, the service ship must visit
as many moving vessels as possible and complete the trip in as small
a travel time as possible. Thus, the problem is bi-objective in nature
and involves a time-dependent traveling salesman problem. We develop
a level-wise customized evolutionary algorithm to find multiple trade-
off solutions in a generative manner. Compared to a mixed-integer
programming (MIP) algorithm, we demonstrate that our customized
evolutionary algorithm achieves similar quality schedules in a fraction of
the time required by the MIP solver.
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A service ship must leave from the harbor and simultaneously:

IMaximize the number of different target ships visited (α)

IMinimizing the total distance traveled (d)

and finally return to the harbor within a predefined time window Tw .
Our approach is composed of three levels:

1.α-level: Defining the subproblem and sequence length (α)

2. Upper level: Custom GA for optimizing routes given α

3. Lower level: Optimizing schedules given a route by using dynamic
programming

Designing routes for a given α gets increasingly more complex as the
number of ships through the working area increases. In our data-set
there were 63 distinct ships passing through the working area.
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(a) Sample Work Area Distribution with 63 ships
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(b) Example route sketch

α-level

Each α-level is a bi-level subproblem with sequences of length α. The
upper level responsible for designing optimal routes and a lower level
designing optimal schedules. To advance to the next α-level we define
a transition function to increase α.

Figure 2: Transition function

The transition function selects a window of size n from an existing
schedule, denoting which ships should be replaced. Then it generates a
permutation of size k from target ships available within the associated
time window. In the example above n = 1 and k = 2, thus we replace
the subsequence [32] with a new subsequence [32, 30] resulting in α
increasing from 3 to 4.

Upper Level

The upper level uses a genetic algorithm with random mating selection, a
single-point crossover, and a customized mutation operator, to generate
optimal routes of length α.

0, 32, 4, 63, Parent 1:

0, 15, 6, 12, Parent 2:

0, 32, 6, 12, Parent 1:

0, 15, 4, 63, Parent 2:

Figure 3: Example single-point crossover with two parents

Upper Level optimization is a custom GA that searches for routes with the following operators:

Selection - Random Selection 

Crossover - Single point crossover

Mutation - Modified Transition function

k = n, no new ships are inserted, the existing sequence is mutated

0, 32, 6, 12, 0, 32, 5, 12, 

Figure 4: Example mutation of a route

The crossover is a single-point crossover on a randomly selected point
within the first parent’s sequence, such that the lengths of both resulting
sequences remain α after the process.
The mutation operator employs a variant of the transition operator from
the α-level with the condition that k = n. This ensures that the length of
the sequences remains the same.

Lower Level

The lower level is a dynamic programming solver that accepts a sequence
as input, and returns a schedule and distance calculation for that route as
output.

(a) First step in distance evaluation (b) Second step in distance evaluation

The following equation describes the optimal schedule for a given route
based on the sub-optimality criteria specifying that the minimum feasible
distance between two adjacent ships in a sequence is the optimal transition

between them. Where v
(Rk)
q denotes the position of ship Rk in the sequence

at time q, and d∗ represents the minimum total distance.

d∗(v
(R+1)
t ) = min

q∈Ω(v (Rk ))
[d∗(v (Rk)

q ) + c(v (Rk)
q , v

(Rk+1)
t )]

Results

Pareto Optimal Solutions and Example pareto solution
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(a) Pareto Optimal solutions for various values of T
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(b) Example Solution with 32 ships
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