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ABSTRACT

For the last couple of years, the development of many-objective
optimization problems opened new avenues of research in
the evolutionary multi-objective optimization domain. There
are already a number of algorithms to solve such problems,
now the next challenge is to interpret the results produced
by those algorithms. In this paper, we propose an alternative
way to visualize high dimensional Pareto-front where the goal
is to present the Pareto-front in terms of a decision maker’s
perspective. All the existing Pareto-from visualization ap-
proaches emphasize on the algorithm convergence speed and
quality (i.e. convergence and spread) of the Pareto solutions.
However, such information is rarely useful in a typical deci-
sion making phase. A decision maker is more interested in
the different aspects of the end result. They are interested in
Pareto-optimal solutions that offer the most trade-off. They
are also interested to know the relative robustness of a solu-
tion and how their neighborhood looks like. In this paper, we
present a way to visualize the Pareto-front in high dimension
by keeping those criteria in mind. Our approach can present
the high dimensional Pareto-front in a way similar to that of
a scatter plot. Thus facilitating the decision making process
more human centric.
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1 INTRODUCTION

With the recent advancement in many-objective (i.e. problems
with four or more conflicting objective functions) optimization
algorithms, there have been a number of post-optimization
issues that need to be addressed. One of the most challenging
problem is to understand the results produced by a many-
objective optimization (MOOP) solver. In an MOOP scenario,
if the target problem is consisted of two or three objectives, a
scatter plot is the most intuitive way to visualize the results,
which allows the decision maker (DM) to easily understand
the trade-off between the objectives, robustness of a solution
(i-e. risk assessment) or analyzing the neighborhood of a par-
ticular solutions etc. Naturally, since it is not possible for a
DM to comprehend four or more spatial dimensions visually,
we try to interpret data points from higher dimensions by
mapping them over a lower dimensional space. One of the
most commonly used such techniques is the Parallel Coor-
dinate Plot (PCP) [8], another such example is RadViz [7].
However, all such methods do not necessarily satisfy all the
criteria required for a better decision making in an MOOP
setting, since those methods were developed for keeping other
criteria in mind. The goal of this paper is to discuss some
alternatives that allows a decision maker to easily explore
the results of an MOOP. This is a very important topic, since
without a straight forward and intuitive interpretation of the
results, all the attempts to solve a difficult MOOP become
somewhat useless, specially in terms of real world engineering
applications.

In terms of high-dimensional and multivariate data anal-
ysis, there have been a number of different visualization
methods invented. Some of which have been applied to the
visualization of MOOP solution sets. As we have already
mentioned, one of the most widely used methods is the PCP
[8], however this technique suffers from several limitations.
The most difficult one is the optimal arrangement of the
parallel vertical axes. Without the optimal arrangement of
those axes, a meaningful comprehension of the results be-
comes difficult. Another approach is so called Heatmaps,
which presents a visualization from which all of the original
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Figure 1: A RadViz plot of a 5 objective DTLZ6
problem, where the true Pareto front (PF) is con-
sisted of five different clusters, however RadViz su-
perimpose all clusters into one place hence there is
no way to visualize them separately.

data can be recovered programmatically; however, they are
generally difficult to interpret because solutions are overlaid
or arbitrarily ordered. Other basic transformation methods,
such as principal component analysis (PCA), transforms the
dimensionality of the data points into a 2-D space so that
it can be visualized with standard techniques, such as scat-
ter plots. The main problem of these transformation based
technique is their limitations to recover the original objective
values that have been used as inputs.

In RadViz [7], each dimension in the dataset is represented
by a dimensional anchor, and each dimensional anchor is
distributed evenly on a unit circle. Each line in the data set
corresponds to a point in the projection, that is linked to
every dimensional anchor by a spring. Each spring’s stiffness
corresponds to the value for that particular thing in that
particular dimension. The position of the point is defined
as the point in the 2D space where the spring’s tension is
minimum. that transforms the objective vectors to map over
polar coordinate in a specific way. However, RadViz fails to
illustrate the Pareto-front (PF) completely when there are
multiple cluster of solutions in the high dimensional space.
One such example is presented in Figure 1.

Despite the loss of important information relevant to deci-
sion making, dimension-reduction methods often offer a useful
visualization and it is especially appealing since they are able
to represent solutions in the two dimensional plane, since
humans are adept at interpreting planar diagrams. Along
with PCA, there are some sophisticated dimension-reduction
methods such as self-organizing maps (SOM) [9], and Sam-
mon Mapping [14] can map high dimensional data points onto
two dimensional plane. However, these methods do not keep
account of the mutually non-dominating nature of solutions
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lying on the PF. Therefore, in general, do not preserve the
dominance relations between individual solutions.

The existing approaches do not take into account the
practical aspects of a PF solutions for decision making. For
example, one might want to know what are the extreme
solutions that optimizes only one objective. Another instance
being which solution offer most trade-oft? If there are mul-
tiple clusters in the PF then what solutions compose the
boundaries in those cluster? And how are we going to visual-
ize them? These questions are not generally addressed in the
current multivariate data visualization techniques.

In this paper, we are going to present an alternative idea
to visualize the Pareto front in high dimension by keeping
those questions in mind. Moreover, in order to address the
visualization of the different aspect of the PF, we will provide
some benchmark objective functions that focus on those
properties.

2 EXISTING MOOP VISUALIZATION
TECHNIQUES

Despite the fact that there are a number of multivariate data
visualization techniques, we do not find many examples from
the evolutionary multi-objective optimization (EMO) point
of view.

Nevertheless, there have been some recent research reports
that address this issue from EMO perspective. For exam-
ple, in [15], the authors present an idea called “Prosection
Method”. The technique is to project the whole set of solu-
tions to the orthogonal plane where only the solutions from
the chosen section are projected. Because multiple planes can
be selected for the projection (as in the scatter plot matrix),
a prosection matrix is used to visualize all the orthogonal
prosections simultaneously. In addition, color coding can be
used for distinguishing between feasible and infeasible solu-
tions. However, as this approach depends on the construction
of orthogonal plane from multiple objectives to be used as an
axis in the final plot, it still suffers from similar limitations
as other methods, specially when the dimension is more than
four.

We can find other examples in [16] where the authors
present a multiple ways to represent a high-dimensional PF.
The paper addresses a common problem with the well-known
Heatmap visualization. Since an arbitrary ordering of rows
and columns renders the Heatmap unclear, the method uses
spectral seriation to rearrange the solutions (along with the
objective values) and thus enhance the clarity of the Heatmap.
A multi-objective evolutionary optimizer is used to further en-
hance the simultaneous visualization of solutions in objective
and parameter space.

In another study [5], the authors proposed a variant of Rad-
Viz method that maps data points from a high-dimensional
objective space into a 2-D polar coordinate plot while pre-
serving Pareto dominance relationship, retaining shape and
location of the PF, and maintaining distribution of individu-
als. The convergence of the approximate front is measured by
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radial values of all population members on that front. Mean-
while, the diversity performance is mainly determined by
niche count of each subregion in a high-dimensional objective
space.

All the existing methods for MOOP solution visualiza-
tion mainly focus on the visualization of convergence of the
PF. Although visualization of the movement of solutions in
the search space might be useful for an algorithm designer,
however DMs are generally not interested in it. Reducing
the number of solution choices and the position of infeasi-
ble/robust solutions (with respect to others) are more im-
portant to a DM. Therefore, reduction of the cardinality of
Pareto solution choices and its intuitive visualization is the
main goal of our study.

3 VISUALIZATION FROM A DM’S
PERSPECTIVE

Our goal of the visualization method differs from the existing
techniques in an interesting way: we are not specifically in-
terested in how close the visualization preserves the topology
of the solutions in the actual objective space. As such avenue
has already been perused, we argue that such representation
is not a principal requirement for decision making. We are
also not interested in how the solution converges to the true
PF, or visualization of the search trajectory.

Instead, we frame the whole process from a more practical
point of view. From our previous experiences with industry
collaborations, we have seen that decision making procedure
requires a completely different set of criteria than an EMO
developer might pursue:

3.1 Solutions with Better Trade-off

First, we need to ask that for a given set of Pareto-optimal
solutions (in dimension over 4), what aspects of the solution
set is more relevant to look at? For example, the extreme
solutions that optimize (i.e. minimize/maximize) a particular
objective are not very interesting to look at, therefore if a
visualization method can explicitly identify them they will
be easier to ignore. A DM will be more interested in the
solutions that offer more trade-offs among the objectives. For
this reason, the visualization technique should present the
interesting (and non-interesting) part of the Pareto-front in
an intelligible way. Such that a DM can explicitly choose the
potential solution from the presented solution set.

Perhaps, the most desirable aspect of the Pareto-front
solutions are those that offer most trade-off among all the
points in a solution set. In literature they are known as Knee
points [2]. If we assume that we do not have any knowledge
about the user‘s preferences, it can be justified that the region
around that knee is most likely to be interesting for the DM.
Since the knee solutions are characterized by the fact that a
small improvement in either objective will cause a large loss
in the other objective, which makes such movement in either
direction not very useful.

Formally, the knee solutions are those, from which, moving
towards any of the objective axes will cause comparatively
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Figure 2: A simple Pareto-optimal front with a knee
[1]. The knee and the two extreme solutions are pre-
sented by circles with increasing radius.

higher amount of deterioration in one or more other objec-
tives. In this paper, we will follow the definition of knee
points discussed in [1]. Let us consider the simple Pareto-
optimal front depicted in Figure 2, with two objectives to
be minimized. This front has a clearly visible bulge in the
middle. If we assume linear preference functions, and (due
to the lack of any other information) furthermore assume
that each preference function is equally likely, the solutions
at the knee are most likely to be the most desirable choice
of the DM. Note that in Figure 2, due to the concavity at
the edges, similar reasoning holds for the extreme solutions
(edges), which is why these should be considered knees as
well. The goal of this paper is to how we should represent
such knee solutions if the Pareto-front is constructed in a
high dimensional space.

3.1.1 Pareto-front Generator Function for Knee Identifica-
tion (DEBMDI1K):. The first problem DEBMDI1K is a slightly
modified problem described in [1]. The problem is scaled ver-
sion of DEBM1DK, where it can compute Pareto surface for
M dimensions and the total number of independent variables
will be N = M — 1. The function is defined in the equation 1

(557) s (55)
0

(75) o (32)

min f1(x) = g(x)r(x) sin (7%:1) sin

min fo(x) = g(x)r(x) sin (7%71) sin

X1

min fy(x) = g(x)r(x) cos (T)

where,
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9 = 1 &
Q(X):1+7N71;m, r(x):N;m(qu)

1\? 2
7> + — cos(2Kmx;)

iz, K) =5+10 (2 —
ri(zq, K) + <m 3 1%

K = # of knees
0<z;<1 i=1,2,...,N

According to the equation, the knee point is located at x =
[0.5,0.5,

...,0.5]. This fixed location of the knee is useful to verify
how the neighborhood embedding distorts the underlying
topology in higher dimension.

3.2 Boundary Solutions:

A DM might also be interested to see what are the boundary
solutions in a PF, because there is no solution exists beyond
the boundary. The boundary solutions are important things
to know if the PF is consisted of multiple isolated clusters and
the boundary solutions reside on the boundary of a cluster.
Hence they are helpful to identify robust solutions in the PF.

3.2.1 Pareto-front Generator Function for Boundary Iden-
tification (DTLZ64P):. The DTLZ64P problem is a slightly
modified version of DTLZ6 [3]. It is formulated in such a way
that in any M dimensions, there will always be 4 disconnected
patches.

min f1(x) = g(x)z1 (2)

min fa(x) =

min fr (x) = g(x)(M — h(x))
where,

M-—-1 N

h(x) = Y @i(l+sin(krz:)), g(x) =1+ % >

i=1 i=M
b— 3, ifi=1
1.5, otherwise
0<z; <1 1=1,2,...,N

3.3 Outlier Solutions (OUTLIERPF)

The next thing we wanted to see if the Pareto front has
outliers solution and how we can represent them to the DM.
In many engineering optimization problems, the search space
might be divided into two such region so that one region
contains a very small number of solutions and the other with
a denser distribution of many points. Moreover, these two
regions might be separated from each other very far. The
challenge of an evolutionary multi-objective optimization
algorithm is to find solutions from both of the regions.

3.3.1 Pareto-front Generator Function for Outlier Identifi-
cation (OUTLIERPF):. To construct such Pareto front, we
formulate a special function for this. We call this function
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Figure 3: An example three dimensional Pareto-front
for the problem OUTLIERPF. The outlier solutions
are located near f; = 0.0, where i # M.

OUTLIERPF:
min fi(x) = g(x)z1 (3)
min f2(x) = g(x)z2

min far(x) = g(x)h(x)

where,
1 M—1
Sz, . X
h(x) = 0007 = 1) ; (100 4 " sin(kmx;))
g X
9x) =1+ ;Mw

Lo 4 =1
" 12, otherwise
0<az;<1 i=12...,N

For the three dimensional case (i.e. M = 3), the problem
OUTLIERPF is composed of five patches of data point clouds.
Four of them are closely places and the fifth one is located at
fi = 0.0, where i # M which is basically the “outliers” in our
case. The problem is defined in such a way that irrespective
of the dimensions, there will always be such five patches. So
that we can verify if the visualization technique can correctly
represent this aspect of the Pareto front. An example Pareto-
front for this problem for M = 3 is presented in the Figure 3.

All these properties can easily be rendered and understood
in three dimensional space (i.e. 3 objective problems). How-
ever, when the number of objectives become increased, the
identification and representation of solutions for knee, bound-
aries and outliers becomes challenging. In the next section,
we discuss our visualization method.
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4 VISUALIZATION METHOD

Our method relies on the mapping of high dimensional PF
objective values onto lower dimensional space (preferable on
a two-dimensional space). During this mapping, we need to
ensure that the neighborhood relations among the points
be kept as close the points in the original space as possible.
If we have a mapping that preserve most of the the local
structure of the data points from the higher dimensional
space, properties like knee, boundaries and outliers can be
visualized in an intelligible way.

4.1 Stochastic Neighborhood Embedding
(SNE)

We utilize a method called Stochastic Neighborhood Embed-
ding (SNE) [10] [6]. SNE is a probabilistic approach that can
place data points, described by high-dimensional vectors or
by pairwise dissimilarities, in a low-dimensional space in a
way that preserves neighborhood relations. A Gaussian is cen-
tered on each solution in the high-dimensional space and the
densities under this Gaussian (or the given dissimilarities) are
used to define a probability distribution over all the potential
neighbors of the solution. The aim of the embedding is to ap-
proximate this distribution as well as possible when the same
operation is performed on the low-dimensional “images” of
the data points. A natural cost function is a sum of Kullback-
Leibler divergences, one per solution, which leads to a simple
gradient for adjusting the positions of the low-dimensional
images. Unlike other dimensionality reduction methods, this
probabilistic framework makes it easy to represent each point
by a mixture of widely separated low-dimensional images.

Although SNE can construct reasonably good visualiza-
tions, it is limited by a cost function that is difficult to
optimize and also it suffers from the so called crowding prob-
lem. In this paper, we have used a variant of SNE called
t-Distributed SNE (t-SNE) that aims to alleviate these prob-
lems. The cost function used by t-SNE differs from the one
used by SNE in two ways: (1) it uses a symmetricized version
of the SNE cost function with simpler gradients, and (2) it
uses a Student-t distribution rather than a Gaussian to com-
pute the similarity between two points in the low-dimensional
space. t-SNE employs a heavy-tailed distribution in the low-
dimensional space to alleviate both the crowding problem
and the optimization problems of SNE. t-SNE is capable of
capturing much of the local structure of the high-dimensional
data very well, while also revealing global structure such as
the presence of clusters at several scales.

4.2 Identification of Knee Solutions in the
Higher Dimensional Objective Space

For the identification of the knee solutions, we will follow the
method presented in [12]. The definition of Pareto-optimality
is a non-reflexive, transitive, and antisymmetric binary rela-
tion, i.e., Pareto dominance. Pareto dominance is defined in
the following manner:

Given a set of objective functions F = [f1, fo, ..., fm] to
be minimized, the vector F(x;) is said to dominate another

vector F(x;), denoted F(x;) < F(x;), if and only if fi(x;) <
fe(x;5) for all k € {1,2,...,M} and fm(x:) < fm(x;) for
some m € {1,2,..., M}. A point x* € S is said to be globally
Pareto optimal or a globally efficient for a multi-objective
optimization problem (MOP) if and only if there does not
exist x € S satisfying F(x) < F(x*). F(x") is then called
globally non-dominated solution.

Trade-off can be computed over a pair of non-dominated
objective vectors and may be defined as the net gain of
improvement in some objectives offset by the accompanying
deterioration in other objectives as a result of substituting one
objective vector with another non-dominated objective vector.
Mathematical definition of trade-off is commonly given for
every pair of objective functions. The equation to compute
this quantity has been borrowed from [12]:

_ ElgmgM max[0, fim (X;) — fin(xi)]
B Zlgmgz\/[ max|0, fm (Xi) — fm(x;)]

In the definition of T'(x;,x;), the numerator evaluates the
total improvement gained by exchanging x; with x; while
the denominator evaluates the deterioration caused by the
exchange. The actual metric to evaluate the worth of a solu-
tion x; € R C S (where, R is an € neighborhood around x;)
in terms of performance trade-off, is given in the following
equation:

T(Xi7 Xj) (4)

,LL(XZ', R) =

= min
Viix; € R,x; AXj X5 AXy

T(xi,%;) (5)

A solution with a larger value of the quantity u(x;, R), within
a neighborhood of R, signifies if the solution belong to the
knee region. If solution far from the knee region the p value
will be smaller.

Algorithm 1 Extract PF Boundaries

Require: C « {C1,Cs,...,Cn} clusters found from apply-
ing DBSCAN on the PF solutions.

Require: K < number of boundary solutions required by
the DM for each cluster.

1: B < 0, set of boundary points

2: for each C; € C do

3: Find eigenvectors (v) and eigenvalues () of C;
4: E(—{(V1,>\1),(Vg,)\z),...,(vn,)\n)}

5: FE + sort E according to descending A

6: for j from 1 to n do

7: V(—{vj,—vj,uj,—uj} s.t. Uj'Vj:()
8: for each w € V do

9: X < minygec; WM

10: if |B] < K then
11: B+ BuUx

12: else

13: return B
14: end if

15: end for

16: end for

17: end for
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4.2.1 Caveat in the Existing Technique: Although the mea-
surement made by the equation 5 is quite accurate tool to
decide if a solution belongs to the knee region or not, what
we have found is that if the number of M becomes larger, the
computation of p becomes more difficult for these reasons:

e ¢ neighborhood is a parameter for u, which is difficult
to infer, since this value depends on the topology and
structure of the Pareto-front.

e [f the number of objectives is bigger and the total
number of solutions in the Pareto-front is smaller, u
function becomes more unreliable. Because of the spar-
sity of points in the neighborhood.

e Also, we have found the neighborhood radius, i.e. €
needs to be different in the different part of the Pareto-
front to correctly compute the u function.

In order to identify and visualize the knee solutions (along
with other aspects of the Pareto-front like boundaries etc.),
first we normalize all the objective vectors to [0.0,1.0] range,
then we map the normalized high-dimensional Pareto-front
onto a low dimensional (in our case, it’s 2D) space using
t-SNE. After the mapping is done, we use the t-SNE neigh-
borhood information to compute the p function for each data
point. Using this approach, the neighborhood radius can be
kept fairly constant, for all our empirical experiments, we
have seen this neighborhood radius to be of 0.15 ~ 0.25.
Moreover, this mapping also allows to see the whole Pareto-
front in a nicely laid out scatter plot. The results of this
visualizations are presented in the Figure 4.

4.3 Identification of Boundaries

In this case, the idea is to find the furthest points on the
cluster from the centroid along a number of directions ro-
tated at a specific interval starting from the principal axis.
Let’s say we want to get K boundary points on a cluster.
First, for a given cluster, we find it’s eigenvectors (and their
corresponding eigenvalues). Then we draw a line from the
cluster centroid along the direction of the eigenvector (with
the highest eigenvalue) and find the points on the cluster that
is the furthest from the centroid that is on the line or having
smallest normal distance from the line. Then we rotate the
line by a certain angle and do the same. In our case, we
have taken four orthogonal lines, i.e. four boundary points
orthogonal to each other. Then we pick the eigenvector with
the next biggest eigenvalue and repeat the same process. We
keep doing it until we have extracted K boundary points
and show them on the t-SNE scatter plot at the end. The
value of K can be specified by a DM. The overall boundary
extraction algorithm is presented in Algorithm 1. An example
boundary extraction procedure is presented in the Figure
5, where the PF is generated from the engineering design
problem described in [11], which we call as CAR-CRASH
problem. Its PF is consisted of 3 clusters and the boundary
extraction algorithm operates on each of the clusters.

Authorl and Author2

4.4 Identification of Outliers

For detection of outliers. We need to find the isolated patches
of point clouds in the higher dimensional space. Therefore,
a straight-forward approach should be to apply clustering
algorithm. However, if the number of objective is high the
clustering algorithm might not identify the outliers in a
correct way. To alleviate this problem, we can apply the
clustering method after the t-SNE mapping. However, we
have found that t-SNE does not always correctly map the
points to preserve the global topological relation onto low
dimensional space.

The t-SNE algorithm adapts its realization of “distance”
to local density variations in the data set. As a result, it
naturally expands dense clusters, and contracts sparse ones,
blurring out cluster sizes. As a result, the t-SNE mapping
distorts the actual cluster sizes of the original data. Also, the
global geometry of the original data points depends on the
parameter called perplezity. For different perplexity values,
the inter-cluster distances come out to be different. Therefore,
mapping produced by t-SNE is not very suitable for cluster
analysis. For clustering we have used DBSCAN algorithm

(4].
5 VISUALIZATION RESULTS

The visualization results are presented in the Figure 4. Here
we present the results from the Pareto-front generator func-
tions described in this paper. The plots are presented as
scatter plots found from the t-SNE mappings where each
point is represented with a circle and the radius of each circle
is proportional to corresponding mu value of a solution. A
larger radius represents higher mu value, hence they are on
the knee of the PF. The Figure 4a presents the visualization
of DEBM1DK problem for 5 objective case. The largest cir-
cle on the top portion of the scatter plot is the knee point
and the other larger circles are mapped from the extreme
solutions of the PF.

The visualization for DTLZ4P is presented in the Figure 4c.
Here we can see four identifiable clusters (PF patches) in the t-
SNE mapping, the knee solutions are also equally identifiable.
The Figure 4d presents the visualization for OUTLIERPF
problem. The small cluster on the top left corner of the
scatter plot is the outliers in the PF. This Pareto-front has
multiple spots where the trade-offs are comparatively better
than the rest of the solutions.

The boundaries from each of the clusters from the PF of
the CAR-CRASH problem [11] is presented in the Figure 4b.
The boundary points are presented with large circles circles.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we have demonstrated an alternative approach
to address the issue of high dimensional Pareto-front visu-
alization. Our approach is more practical in a sense that it
takes account of the DM’s perspective in the visualization
mechanism. Although our method is not suitable for visualiz-
ing an EMO convergence, however such convergence plots are
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(c) Visualization of DTLZ64P Pareto-front (M = 5, n = 2000).

(d) Visualization of OUTLIERPF Pareto-front (M = 5, n = 2000).

Figure 4: The t-SNE mapping of different high dimensional Pareto front of different problems. Here M is the
dimension of the objective space and n is the number of solutions (i.e. objective vector/data points). The
radius of each data point is proportional to the i value computed by the Equation 5. For the CAR-CRASH
problem, the cluster are shown in different markers and the filled triangles are the boundary points.

not very useful during the decision making since other metric
based visualizations (function evaluation vs. hypervolume or
GED) are good enough for such purposes. In spite of some
limitations regarding the correct identifications of clusters in
the PF, we present our idea as an initial “proof of concept”
to tackle the issue of visualization in MOOP. Our approach
is mainly based on the t-SNE mapping which does not retain
the global topological relations among the data points. In the
future we would like to improve the current implementation

by adopting/modifying other mapping techniques like Locally
Linear Embedding [13].

The method of knee finding technique can also be used to
find the interesting regions in the high dimensional PF. For
example, first using a small number of population we can sam-
ple the PF using a generic many-objective optimization algo-
rithms. From that limited sample, we will be able to locate the
regions where the knee solutions are more likely to be found.
After that we can use deterministic method/scalarization
methods like AASF to find more solutions in the knee region.
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Figure 5: The boundary extraction mechanism pro-
cedure on the PF for the engineering design prob-
lem taken from [11]. DBSCAN algorithm is able to
find three clusters and the boundary points are pre-
sented with large circles. The arrows correspond to
two principal axes, as a result algorithm picks four
boundary points from each cluster.

In this way we will be able to find the solutions on the PF
that matters the most to the DM thus help saving a large
amount of computational effort to find the entire PF.
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