

Constrained Bi-objective Surrogate-Assisted Optimization of Problems with Heterogeneous Evaluation Times: Expensive Objectives and Inexpensive Constraints

Julian Blank (<u>https://julianblank.com</u>), Kalyanmoy Deb (<u>https://www.egr.msu.edu/~kdeb/</u>)

COINLab (<u>http://www.coin-lab.org</u>) Michigan State University

K MICHIGAN STATE UNIVERSITY

Motivation: Diffuser Inlet Design Problem

Javier Lobato Perez, Genetic algorithms applied in Computer Fluid Dynamics for multiobjective optimization, PhD Thesis, 2018.

https://github.com/jlobatop/GA-CFD-MO

Toyota Prius 2010

Motivation: Electric Machine Design Optimization

Radial view of the geometry

Model from Altair Fluxmotor 2019/Motor Catalog/Automative_Tansport_1/Prius_2010"

Motivation: Electric Machine Design Optimization

- Variables: 10 continuous variables with a precision of 2
- Objectives: (Computationally Expensive)
 - Maximize: Average Torque
 - Minimize: Torque Ripple
- Constraints (Computationally Inexpensive):
 - Satisfying the geometric constraints

Motivation: Electric Machine Design Optimization

- 1. $\sqrt{ZIM_X1^2 + ZIM_Y1^2} \ge \frac{IM_ID}{2} + 2$
- 2. $\sqrt{ZIM_X4^2 + ZIM_Y4^2} \leq \frac{IM_OD}{2} 1$
- 3. ZIM_X7 ZIM_X5 > 0
- 4. $ZIM_{Y7} ZIM_{Y5} > 0$
- 5. $\sqrt{ZIM_X7^2 + ZIM_Y7^2} \le \frac{IM_OD}{2} IM_T1 1$
- $6. \qquad ZIM_X8 ZIM_X4 \le 3$
- 7. $ZIM_Y8 ZIM_Y4 \le 1$
- $8. \qquad OS_WS1 OS_WO > 0$
- 9. $|ZOS_V1 ZOS_VE| \le ZOS_VE$

- Simple to calculate
- But challenging to satisfy through manual analysis

Type of Optimization Problems

 $\begin{array}{lll} \mbox{Min/Max} & f_m \, (x) & m \, = \, 1, 2, , \dots, M; \\ \mbox{subject to} & g_j \leq 0, & j \, = \, 1, 2, \dots, J; \\ & h_k = \, 0, & k \, = \, 1, 2, \dots, K; \\ & x_i^{(L)} \leq \, x_i \, \leq \, x_i^{(U)}, & i \, = \, 1, 2, \dots, N. \end{array}$

Related Work

- Allmendinger, R., Knowles, J.: 'Hang on a minute': Investigations on the effects of delayed objective functions in multiobjective optimization. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) Evolutionary multi-criterion optimization. pp. 6–20. Springer Berlin Heidelberg (2013)
- Allmendinger, R., Handl, J., Knowles, J.: Multiobjective optimization: When objectives exhibit non-uniform latencies. European Journal of Operational Research243(2), 497 513 (2015)
- Tinkle Chugh, Richard Allmendinger, Vesa Ojalehto, and Kaisa Miettinen. 2018. Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '18). Association for Computing Machinery, New York, NY, USA, 609–616. Thomann, J., Eichfelder, G.: A trust-region algorithm for heterogeneous multiobjective optimization. SIAM Journal on Optimization29(2), 1017–1047 (2019)
- Wang, X., Jin, Y., Schmitt, S., Olhofer, M.: Transfer learning for gaussian process assisted evolutionary biobjective optimization for objectives with different evaluation times. In: Proceedings of the 2020 genetic and evolutionary computation conference. pp. 587–594. GECCO '20, ACM, New York, NY, USA (2020)

Existing studies focus on unconstrained heterogeneously expensive bi-objective problems

Methodology

- IC-SA-NSGA-II
 - IC: Inexpensive Constraint(s)
 - SA: Surrogate Assisted
 - NSGA-II: Baseline Algorithm
- Initial Design of Experiments:
 - Rejection Based Sampling (RBS)
 - Niching Genetic Algorithm (NGA)
 - Riesz s-Energy Optimization (Energy)
- Algorithm Loop:
 - Exploitation with Surrogate-Bias
 - Exploration through traditional Mating

Rejection Based Sampling (RBS)

Use Random or Pseudo Random Sampling and accept a point only if it is feasible.

Niching Genetic Algorithm (NGA)

Execute a genetic algorithm with ϵ -clearing where the constraint is the objective.

Environmental Survival

Generating Well-Spaced Points on a Unit Simplex for Evolutionary Many-Objective Optimization (TEV, 2020))

J. Blank, K. Deb, Y. Dhebar, S. Bandaru and H. Seada, "Generating Well-Spaced Points on a Unit Simplex for Evolutionary Many-Objective Optimization," in IEEE Transactions on Evolutionary Computation, doi: 10.1109/TEVC.2020.2992387.

Riesz s-Energy Optimization (Energy)

Improve the result from NGA further by iteratively improving Riesz s-Energy

12

MICHIGAN STATE UNIVERSITY

Sampling

- Results on two-dimensional test problems: TNK, SRN CTP8
- The Riesz s-Energy method achieves a well–spaced point set across all problems
- Different clusters of feasible regions are not an issue (at least for lower dimensional spaces)

What about higher Dimensions?

OSY

	Algorithm 1: IC-SA-NSGA-II: Inexpensive Constrained Surrogate-				
	Assisted NSGA-II.				
Methodology: Pseudo Code	Input: Number of Variables n , Expensive Objective Function $f(\mathbf{x})$, Inexpensive Constraint Function $g(\mathbf{x})$, Maximum Number of Solution Evaluations \mathbf{SE}^{\max} , Number of Design of Experiments N^{DOE} , Exploration Points $N^{(\exp l \mathbf{x})}$, Exploitation Points $N^{(\exp l \circ \mathbf{i})}$, Number of generations for exploitation k , Multiplier of offsprings for exploration s				
1 2 3	/* initialize feas. solutions using the inexpensive function $g */X \leftarrow \text{constrained_sampling}(\text{'energy'}, N^{\text{DDE}}, g)$ $\mathbf{F} \leftarrow f(\mathbf{X})$ while $ \mathbf{X} < SE^{\max} \operatorname{do}$				
Make use of the fact that the constraints are computationally	$ \begin{array}{l} \texttt{/* exploitation using the surrogate} \\ \hat{f} \leftarrow \texttt{fit_surrogate}(\mathbf{X}, \mathbf{F}) \\ (\mathbf{X}^{(\texttt{cand})}, \mathbf{F}^{(\texttt{cand})}) \leftarrow \texttt{optimize}(\texttt{'nsga2'}, \hat{f}, \textbf{g}, \mathbf{X}, \mathbf{F}, k) \\ (\mathbf{X}^{(\texttt{cand})}, \mathbf{F}^{(\texttt{cand})}) \leftarrow \texttt{eliminate_duplicates}(\mathbf{X}, \mathbf{X}^{(\texttt{cand})}, \mathbf{F}^{(\texttt{cand})}) \\ C \leftarrow \texttt{cluster}(\texttt{'k_means'}, N^{(\texttt{exploit})}, \mathbf{F}^{(\texttt{cand})}) \\ \mathbf{X}^{(\texttt{exploit})} \leftarrow \texttt{ranking_selection}(\mathbf{X}^{(\texttt{cand})}, C, \texttt{crowding}(\mathbf{F}^{(\texttt{cand})})) \end{array} $				
9 10 11	$ \begin{array}{c} \texttt{/* exploration using mating and least crowded selection} & \texttt{*/} \\ \mathbf{X}^{'}, \mathbf{F}^{'} \leftarrow \texttt{survival}(\mathbf{X}, \mathbf{F}) \\ \mathbf{X}^{(\texttt{mat})} \leftarrow \texttt{mating}(\mathbf{X}^{'}, \mathbf{F}^{'}, s \cdot N^{(\texttt{explr})}) \\ \mathbf{X}^{(\texttt{explr})} \leftarrow \texttt{feas_and_max_distance_selection}(\mathbf{X}^{(\texttt{mat})}, \mathbf{X}^{(\texttt{cand})}, X, g) \end{array} $				
12 13 14 15	$ \begin{array}{c} \texttt{/* evaluate and merge to the archive} \\ \mathbf{F}^{(\text{explr})} \leftarrow f(\mathbf{X}^{(\text{explr})}); \ \mathbf{F}^{(\text{exploit})} \leftarrow f(\mathbf{X}^{(\text{exploit})}); \\ \mathbf{X} \leftarrow \mathbf{X} \cup \mathbf{X}^{(\text{explr})} \cup \mathbf{X}^{(\text{exploit})} \\ \mathbf{F} \leftarrow \mathbf{F} \cup \mathbf{F}^{(\text{explr})} \cup \mathbf{F}^{(\text{exploit})} \\ \end{array} \\ \mathbf{end} \end{array} $				

Methodology: Exploitation

(a) Exploitation: Select solutions from the candidates set obtained by optimizing on the surrogate.

3 V	3 while $ X < SE^{\max}$ do							
	/* exploitation using the surrogate							
4	$\hat{f} \leftarrow \texttt{fit_surrogate}(\mathbf{X}, \mathbf{F})$							
5	$\left(\mathbf{X}^{(\texttt{cand})}, \mathbf{F}^{(\texttt{cand})} ight) \leftarrow \texttt{optimize}(\texttt{'nsga2'}, \hat{f}, g, \mathbf{X}, \mathbf{F}, k)$							
6	$\left(\mathbf{X}^{(\texttt{cand})}, \mathbf{F}^{(\texttt{cand})}\right) \gets \texttt{eliminate_duplicates}(\mathbf{X}, \mathbf{X}^{(\texttt{cand})}, \mathbf{F}^{(\texttt{cand})})$							
7	$C \gets \texttt{cluster}(\texttt{'k_means'}, N^{(\texttt{exploit})}, \mathbf{F}^{(\texttt{cand})})$							
8	$\mathbf{X}^{(\texttt{exploit})} \leftarrow \texttt{ranking_selection}(\mathbf{X}^{(\texttt{cand})}, C, \texttt{crowding}(\mathbf{F}^{(\texttt{cand})}))$							

*/

9 10 11

Methodology: Exploration

(b) Exploration: Select from a solution set obtained through evolutionary operators by maximizing the distance to existing solutions and candidates.

<pre>/* exploration using mating and least crowded selection</pre>							
$\mathbf{X}^{'}, \mathbf{F}^{'} \leftarrow \texttt{survival}(\mathbf{X}, \mathbf{F})$							
$\mathbf{X}^{\texttt{(mat)}} \gets \texttt{mating}(\mathbf{X}^{'}, \mathbf{F}^{'}, s \cdot N^{\texttt{(explr)}})$							
$\left \begin{array}{c} \mathbf{X}^{(\texttt{explr})} \gets \texttt{feas_and_max_distance_selection}(\mathbf{X}^{(\texttt{mat})}, \mathbf{X}^{(\texttt{cand})}, X, g) \right \\ \end{array} \right $							

*/

Results: Constrained Bi-objective Optimization Problems

Problem	Variables	Constraints	$ SE^{max} $	NSGA-II	SA-NSGA-II	IC-SA-NSGA-II
CTP1	10	2	200	3.6399	0.0237	0.0196
CTP2	10	1	200	1.4422	0.1721	0.0173
CTP3	10	1	200	1.2282	0.2752	0.0357
CTP4	10	1	400	0.8489	0.3969	0.0736
CTP5	10	1	400	0.7662	0.1145	0.0139
CTP6	10	1	400	7.7155	0.1909	0.0117
CTP7	10	1	400	1.5517	0.0164	0.0032
CTP8	10	2	400	11.6452	0.5963	0.0074
OSY	6	6	500	0.4539	0.0273	0.0381
SRN	2	2	200	0.0263	0.0112	0.0108
TNK	2	2	200	0.1281	0.0200	0.0092
C2DTLZ2	12	1	200	0.3787	0.1185	0.0484
C3DTLZ4	7	2	200	0.2622	0.1210	0.0481
CAR	7	10	200	0.2362	0.0168	0.0147

Results: Constrained Bi-objective Optimization Problems

19

Future Work: Heterogeneously Expensive Objectives/Constraints time t

 $\begin{array}{lll} \mbox{Min/Max} & f_m \, (x) & m \, = \, 1, 2, \dots, M; \\ \mbox{subject to} & g_j \leq 0, & j \, = \, 1, 2, \dots, J; \\ & h_k = 0, & k \, = \, 1, 2, \dots, K; \\ & x_i^{(L)} \leq x_i \, \leq \, x_i^{(U)}, & i \, = \, 1, 2, \dots, N. \end{array}$

Conclusions

- Efficiently Handling Inexpensive Constraints makes sense and can significantly improve the performance of an algorithm
- The Riesz s-Energy concept is an effective concept for creating a feasible space-filling set of points
- Expensive objectives and inexpensive constraints and It is a special case of computationally expensive optimization problems and concepts dealing with with varying expensiveness need to be investigated

Questions?