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https://github.com/jlobatop/GA-CFD-MO

GeometryVisualization of Search Space

Javier Lobato Perez, Genetic algorithms applied in Computer Fluid Dynamics for 
multiobjective optimization, PhD Thesis, 2018.

Motivation: Diffuser Inlet Design Problem
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Motivation: Electric Machine Design Optimization
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Radial view of the geometry

2D model used for 
simulation

Toyota Prius 2010
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Model from Altair Fluxmotor 2019/Motor Catalog/Automative_Tansport_1/Prius_2010”
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Ø Variables: 10 continuous 
variables with a precision of 2

Ø Objectives: (Computationally 
Expensive) 
Ø Maximize: Average Torque
Ø Minimize: Torque Ripple

Ø Constraints (Computationally 
Inexpensive): 
Ø Satisfying the geometric 

constraints
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Model from Altair Fluxmotor 2019/Motor Catalog/Automative_Tansport_1/Prius_2010”
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1. 𝑍𝐼𝑀_𝑋1! + 𝑍𝐼𝑀_𝑌1! ≥ "#_"%
!

+ 2

2. 𝑍𝐼𝑀_𝑋4! + 𝑍𝐼𝑀_𝑌4! ≤ "#_&%
!

– 1

3. ZIM_X7 – ZIM_X5 > 0

4. ZIM_Y7 – ZIM_Y5 > 0

5. 𝑍𝐼𝑀_𝑋7! + 𝑍𝐼𝑀_𝑌7! ≤ "#_&%
!

−𝐼𝑀_𝑇1 − 1

6. ZIM_X8 – ZIM_X4 ≤ 3

7. ZIM_Y8 – ZIM_Y4 ≤ 1

8. OS_WS1 – OS_WO > 0 

9. ZOS_V1 – ZOS_VE ≤ 𝑍𝑂𝑆_𝑉𝐸

• Simple to calculate
• But challenging to satisfy 

through manual analysis

Motivation: Electric Machine Design Optimization
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Type of Optimization Problems

6

subject to 𝑔3 ≤ 0, 𝑗 = 1, 2, … , 𝐽;
Min/Max 𝑓4 𝑥 𝑚 = 1, 2, , … ,𝑀;

𝑥5
(7) ≤ 𝑥5 ≤ 𝑥5

9 , 𝑖 = 1, 2, … , 𝑁.
ℎ: = 0, 𝑘 = 1, 2, … , 𝐾;

𝑓;

𝑓<

𝑔;

𝑔<

𝑔=

𝑔>

time 𝑡
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Existing studies focus on unconstrained heterogeneously expensive bi-objective problems
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Methodology
• IC-SA-NSGA-II

• IC: Inexpensive Constraint(s)
• SA: Surrogate Assisted
• NSGA-II: Baseline Algorithm

• Initial Design of Experiments:
• Rejection Based Sampling (RBS)
• Niching Genetic Algorithm (NGA)
• Riesz s-Energy Optimization (Energy)

• Algorithm Loop:
• Exploitation with Surrogate-Bias
• Exploration through traditional Mating

8
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Rejection Based Sampling (RBS)
Use Random or Pseudo Random Sampling and accept a point only if it is feasible.
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𝑥;

𝑥<

𝒌 = 𝟏
𝑥;

𝒌 = 𝟐
𝑥;

𝒌 = 𝟑
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Niching Genetic Algorithm (NGA)

Execute a genetic algorithm with 𝜖-clearing where the constraint is the objective.
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𝑥;

𝑥<

Environmental Survival Representative Solutions
𝑥;

𝑥<
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Generating Well-Spaced Points on a Unit Simplex for Evolutionary Many-
Objective Optimization (TEV, 2020))

J. Blank, K. Deb, Y. Dhebar, S. Bandaru and H. Seada, "Generating Well-Spaced Points on a Unit Simplex for Evolutionary 
Many-Objective Optimization," in IEEE Transactions on Evolutionary Computation, doi: 10.1109/TEVC.2020.2992387.
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Riesz s-Energy Optimization (Energy)

Improve the result from NGA further by iteratively improving Riesz s-Energy

12
NGA

𝑥;

𝑥<

𝑥;

𝑥<

Riesz s-Energy
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Sampling
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• Results on two-dimensional test 
problems: TNK, SRN CTP8

• The Riesz s-Energy method 
achieves a well–spaced point set 
across all problems

• Different clusters of feasible 
regions are not an issue (at least 
for lower dimensional spaces)
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What about higher Dimensions?
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OSY
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Methodology: Pseudo Code
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Make use of the fact 
that the constraints 
are computationally 
inexpensive



COIN

Methodology: Exploitation
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Methodology: Exploration
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Results: Constrained Bi-objective Optimization Problems
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Results: Constrained Bi-objective Optimization Problems
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Future Work: Heterogeneously Expensive Objectives/Constraints

subject to 𝑔3 ≤ 0, 𝑗 = 1, 2, … , 𝐽;
Min/Max 𝑓4 𝑥 𝑚 = 1, 2, , … ,𝑀;

𝑥5
(7) ≤ 𝑥5 ≤ 𝑥5

9 , 𝑖 = 1, 2, … , 𝑁.
ℎ: = 0, 𝑘 = 1, 2, … , 𝐾;

𝑓;

𝑓<

𝑔;

𝑔<

𝑔=

𝑔>

time 𝑡

𝑓=



COIN

21

• Efficiently Handling Inexpensive Constraints makes sense and can 
significantly improve the performance of an algorithm

• The Riesz s-Energy concept is an effective concept for creating a 
feasible space-filling set of points

• Expensive objectives and inexpensive constraints and It is a special 
case of computationally expensive optimization problems and 
concepts dealing with  with varying expensiveness need to be 
investigated

Conclusions
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Questions?
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