Trust-Region Based Multi-Objective Optimization for Low Budget Scenarios

Proteek Roy, Rayan Hussein, Julian Blank, Kalyanmoy Deb

Department of Electrical and Computer Engineering

Michigan State University

March 12, 2019

- □ Metamodeling for Multi-Objective Optimization
- A Taxonomy for Metamodeling Frameworks for Evolutionary Multi-Objective Optimization
- Metamodeling Framework
- Trust Region based method
- Switching Between Frameworks and Use of Trust Regions
- Results and Comparison
- Conclusions

Metamodeling = Surrogate Model = Approximation Model

- Solution evaluations are computationally expensive in practice (Network flow simulation, CFD)
- Single-objective methods may not be straightforward or easy to extend to EMO
- Multiple solutions are targeted
- Metamodels are not accurate
- Multiple objectives and constraints to be meta-modeled
- Constraint handling must be integral part of metamodeling (often ignored)

- 1. LHS sampling & evaluation (High-Fidelity), sent to Archive
- Build surrogate model(s) for objective(s) and constraint(s)
- 3. EMO
- Return one/multiple solution(s) & evaluation (High-Fidelity), include in Archive
- 5. Go to step 2

Choices of Metamodel Based Optimization

A Taxonomy for Multi-Objective Constrained Problems

MICHIGAN STATE

[J] K. Deb, R. Hussein, P. Roy, and G. Toscano "A Taxonomy for Metamodeling Frameworks for Evolutionary Multi-Objective Optimization", *Accepted IEEE Transactions on Evolutionary Computation,2018*.

Kriging Predictor:
$$\hat{y}(x) = \hat{\mu} + r(x^*, x)^T R^{-1} (y(x) - \mathbf{1}\hat{\mu})$$

Error Estimate: $s^2(x) = \hat{\sigma}^2 [1 - r^T R^{-1}r + \frac{(1 - r^T R^{-1}r)^2}{\mathbf{1}^T R^{-1}1}]$
 $\int_{-1}^{1} \int_{-2}^{0} \int_{-0.5}^{0} \int_{0.5}^{0} \int_{$

- Achievement scalarization $\operatorname{Minimize}_{(\mathbf{x})} \operatorname{ASF}(\mathbf{x}, \mathbf{z}, \mathbf{w}) = \max_{i=1}^{M} \left(\frac{f_i(\mathbf{x}) z_i}{w_i} \right),$ method (Wierzbicki, 1980) Subject to $g_j(\mathbf{x}) \leq 0, \quad j = 1, 2, \dots, J.$
- Reference direction *w* is Obj2 changed, reference point *z* is fixed to find different PO points
- For a fixed *z* and changed w landscape leads to respective PO point
- It makes monotonic single objective value

MICHIGAN STATE

9

Trust Regions

- Maintain a balance between exploration versus exploitation
- Reduce the two radii (R_{trust} and R_{Prox}) after every metamodeling task by constant factors:

Trust Region Method for Single-Objective Optimization

 $r = \frac{f(p) - f(q)}{f(p) - \hat{f}(q)}.$

Minimize_q $\hat{f}(q)$, Subject to $||q - p|| \le \delta_k$.

P: The current iterate (solution).

q: The new predicted point.

 δ_{k} : The search is restricted within a radius.

[1] Alexandrov, N.M., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust-region framework for managing the use of approximation models in optimization. Structural optimization (1998)

Proposed Trust Region in Multi-objective Evolutionary Algorithm

$$\begin{aligned} \text{Minimize}_{q \in \Omega} \quad \hat{f}_1(q), \dots, \hat{f}_M(q) \\ \hat{g}_j(x) \ge 0, \quad \forall j \in \{1, \dots, J\} \\ \text{Subject to} \quad \|q - p\| \le \delta_k^p, \quad \exists p \in A \end{aligned}$$

How to Apply Performance Indicator in Multi-Objective Scenario?

$$r = \frac{f(p) - f(q)}{f(p) - \hat{f}(q)}.$$

The proposed performance criteria based on ASF:

$$PI_{ASF}(q) = \frac{ASF(p) - ASF(q)}{ASF(p) - \widehat{ASF}(q)}.$$

 \widehat{ASF} : is obtained from predicted objectives.

A=Archive

Hypervolume based Performance Indicator (PI_{HV}) :

$$PI_{HV}(q) = \frac{HV(F(A) \cup F(q)) - HV(F(A))}{HV(F(A) \cup \hat{F}(q)) - HV(F(A))}$$

Performance Indicator for Constrained Problems:

$$PI_{CV}(q) = \frac{CV(G(p)) - CV(G(q))}{CV(G(p)) - CV(\hat{G}(q))}$$

$r = \begin{cases} PI_{HV}(q) \text{ or } PI_{ASF}(q), \\ r_2 + \epsilon, \\ r_1 - \epsilon, \\ PI_{CV}(q), \end{cases}$

if both p and q feasible,
if p infeasible, q feasible,
if p feasible, q infeasible,
otherwise.

Proposed Overall Algorithm

Algorithm 1: Trust Region Based Algorithm or TR-NSGA-II **Input** : Obj: $[f_1, \ldots, f_m]^T$, Constr: $[g_1, \ldots, g_J]^T$, n (vars), ρ (sample size), E (max. high-fidelity SEs), NSGA-II (multi-obj EA) with pop-size μ , number of generation for model optimization τ , other parameters of NSGA-II Γ , Constraint violation function **CV**, Trust region parameters $\delta_{init}, \Delta_{max}, c_1, c_2, r_1$ and r_2 Output: Solution set P_T 1 $t, e \leftarrow 0;$ 2 $P_t, F_t, G_t \leftarrow \emptyset;$ 3 $P_{new} \leftarrow LHS(\rho, n) //$ Initial solutions 4 $\delta^{\ell} \leftarrow \delta_{init}, \forall \ell \in \{1, \dots, \rho\};$ 5 while True do $\mathbf{F}_{new}^{i} \leftarrow f_{i}(\mathbf{P}_{new}), \forall i \in \{1, \dots, M\} / / \text{ eval obj.}$ 6 $G_{new}^j \leftarrow g_j(P_{new}), \forall j \in \{1, \dots, J\} // \text{ eval constr.}$ $\overline{7}$ if t > 0 then 8 $\widehat{\mathbf{F}}_{norm}^{i} \leftarrow \widehat{f}_{t}^{i}(\mathbf{P}_{new}), \forall i \in \{1, \dots, M\} / / \text{ predicted}$ 9 $\widehat{G}_{new}^{j} \leftarrow \widehat{g}_{t}^{j}(P_{new}), \forall j \in \{1, \dots, J\} // \text{ predicted}$ 10 $\delta \leftarrow \text{UPDATE}_\text{TRUSTREGION}(F_t, F_{new}, G_t, G_{new}, \delta)$ 11 end 12 $P_{t+1}, F_{t+1}, G_{t+1} \leftarrow (P_t \cup P_{new}), (F_t \cup F_{new}) \text{ and } (G_t \cup G_{new});$ 13 $e \leftarrow e + |\mathbf{P}_{new}|;$ $\mathbf{14}$ break if $e \ge E$; 15 $\widehat{f}_{t+1}^i \leftarrow \text{METAMODEL}(\mathbf{F}_{t+1}^i), \forall i \in \{1, \dots, M\} / / \text{ metamodel obj.}$ 16 $\widehat{g}_{t+1}^{j} \leftarrow \text{METAMODEL}(\mathbf{G}_{t+1}^{j}), \forall j \in \{1, \dots, J\} / / \text{ metamodel constrt}.$ 17 $P_{new} \leftarrow NSGA-II(\widehat{f}_{t+1}, \widehat{q}_{t+1}, \mu, \tau, \Gamma, E - e, CV, \delta);$ // Optimize model 18 space $t \leftarrow t + 1$: 19 20 end 21 return $P_T \leftarrow$ filter the best solutions from P_{t+1}

Used Parameters-RGA and NSGA-II

- Population size = 10*n*
- Crossover probability, $p_c = 0.9$
- Number of generations = 100
- Mutation probability, $p_m = 1/n$
- Distribution index for SBX, $\eta_c = 2$
- Distribution index for Polynomial mutation, $\eta_m = 20$.
- Two objectives unconstrained: ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. With 10 variables, **500 FE**, and 21 reference directions.
- Two objectives constraint: BNH, SRN, TNK, OSY, and Welded Beam. With original size variables, **500 FE**, and 21 reference directions.

Performance Metrics

- Inverted Generational Distance (IGD)
- Wilcoxon signed-ranked (p-value)

Results: Two Objective Unconstrained problems

Results: Two Objective Constrained problems

IGD and GD Comparison

	-		-				-			
Problem /Method	NSG	A-II	M	1-2	TR-NS	SGA-II	K-R	K-RVEA		
1 Toblem/ Method	IGD	GD	IGD	GD	IGD	GD	IGD	GD		
ZDT1	0.27131	0.34582	0.01161	0.01091	0.00121	0.00122	0.07964	0.03715		
2011	p=1.852e-05	p=1.852e-05	p=7.7801e-04	p=7.4613e-04	-	-	p=1.852e-05	p=1.852e-05		
Z DT2	0.98265	0.61637	0.00975	0.00755	0.00057	0.00081	0.03395	0.00080		
	p=1.852e-05	p=1.852e-05	p=1.852e-05	p=1.852e-05	-	p=0.2851	p=1.852e-05	-		
ZDT3	0.32080	0.38940	0.01251	0.00761	0.00870	0.00230	0.02481	0.00650		
2013	p=1.852e-05	p=1.852e-05	p=1.852e-05	p=1.852e-05	-	-	p=1.852e-05	p=1.802e-04		
	25.24040	34.43350	7.11881	10.10851	6.97620	12.92170	4.33221	4.50901		
2014	p=1.852e-05	p=1.852e-05	p=0.7928	p=0.1007	p=0.8955	p=0.2934	-	-		
ZDT6	5.00571	4.80922	1.55861	2.27535	0.31070	2.84941	0.65462	1.50551		
2010	p=1.852e-05	p=1.852e-05	p=1.852e-05	p=0.001	-	p=0.0151	p=1.852e-05	-		
BNH	0.78981	0.19842	0.45272	0.13696	0.09651	0.09092	-	-		
DINH	p=1.852e-05	p=1.852e-05	p=1.852e-05	p=1.852e-05	-	-				
SBN	1.66162	2.11235	0.67285	0.75337	1.44045	1.74951	-	-		
5101	p=1.852e-05	p=1.852e-05	-	-	p=1.852e-05	p=1.852e-05				
TNK	0.04182	0.01341	0.01543	0.01008	0.00141	0.00201	-	-		
INK	p=1.852e-05	p=1.852e-05	p=1.852e-05	p=1.852e-05	-	-				
OSV	35.80211	27.43991	4.78063	0.59202	0.16731	0.25063	-	-		
051	p=1.852e-05	p=1.852e-05	p=1.852e-05	p=1.852e-05	-	-				
Welded Beam	1.10272	0.21092	0.92692	1.68806	0.07681	1.72811	-	-		
welded Dealli	p=1.852e-05	-	p=1.8267e-04	p = 0.0042	-	p=0.0012				
C2DTLZ2	0.13733	0.04792	0.03355	0.02373	0.06411	0.02991	-	-		
0201122	p=1.852e-05	p=1.852e-05	-	-	p=1.8267e-04	p=1.8267e-04				

Trust Region Adaptation

- It is more efficient to use different metamodeling frameworks at different stages of the optimization process.
- Adaptive Switching Mechanisms: Ensemble-based method involving different metamodeling frameworks.
- Implemented the trust regions concept for getting more robust solutions and reduce the uncertainty as well.

Adaptive Switching Method

Selection Error Probability: Pairwise comparison between high-fidelity and prediction values (metamodeling)

Results of Adaptive Switching Method

Median IGD run for ZDT3 test problem

	ZDT3-500 FEs ,IGD: 0.0039823, GD: 0.0015807																			
Frameworks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
M1-1																				
M1-2																				
M2-1																				
M3-1																				
M4-1																				
M5																				

	ZDT3-500 FEs ,IGD: 0.0039823, GD: 0.0015807																			
Frameworks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
M1-2																				
M2-2																				
M3-2																				
M4-2																				
M6																				

	ZDT3-500 FEs ,																			
Frameworks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
M1-1																				
M1-2																				
M2-1																				
M2-2																				
M3-1																				
M3-2																				
M4-1																				
M4-2																				
M5																				
M6																				

Mean run for ZDT3 test problems: Part-III

Results of IGD for Adaptive Switching Method

MICHIGAN STATE

Problem	MOEA/D-EGO	K-RVEA	CSEA	GS-ASM
ZDT1	0.05611	0.07964	0.95330	0.00130
ZDTT	p=8.1e-5	p=8.1e-5	p=8.1e-5	p=0.0910
7DT2	0.04922	0.03395	1.01060	0.00055
ZD12	p=8.1e-5	p=8.1e-5	p=8.1e-5	-
7DT3	0.30380	0.02481	0.94840	0.00391
ZD15	p=8.1e-5	p=8.1e-5	p=8.1e-5	-
ZDT4	73.25920	4.33221	12.71600	0.39992
	p=8.1e-5	p=8.1e-5	p=8.1e-5	-
7076	0.51472	0.65462	5.42620	0.24440
2010	p=8.1e-5	p=8.1e-5	p=8.1e-5	p= 0.0612
DTI 72	0.33170	0.0548	0.11420	0.03701
DILL2	p=8.1e-5	p=8.1e-5	p=8.1e-5	p=0.157
DTI 74	0.64533	0.0449	0.08110	0.07934
DILLA	p=8.1e-5	-	p=0.0022	p=0.0380
DTI 75	0.26203	0.0164	0.03081	0.01252
DILLS	p=8.1e-5	p=8.1e-5	p=8.1e-5	p=0.211
DTI 77	5.33220	0.0531	0.70520	0.06529
DILL	p=8.1e-5	-	p=8.1e-5	p=0.1930

Median IGD on unconstrained problems using GS-ASM and MOEA/D-EGO, K-RVEA, and CSEA algorithms.

- Trust regions are used as a constraint in the variable space during optimization to deal with uncertainties of metamodels.
- Proposed two performance indicators based on ASF & Hypervolume to adapt trust regions.
- A constraint handling scheme is presented to handle the trust region adaptation for constrained problems
- A multiple trust regions implemented with multiple trade-off solutions.
- Our results on several test multiobjective optimization problems have shown that we can achieve better convergence using the proposed method than that without a trust region.

- "A Taxonomy for Metamodeling Frameworks for Evolutionary Multiobjective Optimization"- K. Deb, R. Hussein, PC Roy, G. Toscano-Pulido
- "Adaptive Switching Strategy for Metamodeling Based Multiobjective Optimization: Part I, Generative Frameworks" R. Hussein, K. Deb and PC Roy
- "Adaptive Switching Strategy for Metamodeling Based Multiobjective Optimization: Part II, Simultaneous and Combined Frameworks"- PC Roy, R. Hussein, K. Deb
- Github Repo: https://github.com/proteekroy

Questions and Comments?